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The controlled object x′ = Ax+u, u ∈ U , of the second order with
complex eigenvalues is considered. The real part of the eigenvalues
are assumed to be positive. The control region U is a convex poly-
gon with the origin in its interior. The the controllability region Σ
is an open, convex, bounded set in the state plane R2.

In the article it is proved that each tajectory x(t) starting from a
point x0 6∈ Σ and satisfying the maximum principle is in a sense, the
most slowly going away trajectory. This idea is formulated exactly
with the help of Bellman function and justified. This explains the
meaning of the maximum principle outside of the controllability
region.

I. Introduction

Consider a linear controlled object of the second order

x′ = Ax + u, u ∈ U, (1)

where

A =
(

a1
1 a1

2
a2

1 a2
2

)

is a matrix with constant elements; x = (x1, x2)T ∈ R2 is the state vector of
the object (it is contravariant, i.e., a column vector), and the control region
U is a convex polygon containing the origin in its interior. The equation
(1) can be written in the coordinate form:

x′i =
∑

j=1,2

ai
jx

j + ui, i = 1, 2.
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A control u(t), t0 ≤ t ≤ t1, is admissible, if it is piecewise continuous
and u(t) ∈ U for all t, t0 ≤ t ≤ t1. We always assume that the admissible
controls are right continuous, i.e., u(t) = u(t + 0) for t0 ≤ t ≤ t1, and
moreover, u(t1) = u(t1 − 0).

Let u(t), t0 ≤ t ≤ t1 be an admissible control and x0 ∈ R2 be a given
initial point. The solution x(t), t0 ≤ t ≤ t1, of the equation x′ = Ax + u(t)
with the initial condition x(t0) = x0 is said to be the trajectory correspon-
ding to the control u(t) with the initial point x0. We say that the control
u(t), t0 ≤ t ≤ t1, transits the initial point x0 to the terminal state x(t1).
Every trajectory is continuous; moreover, it is differentiable for all t except
a finite number of moments t.

We consider the time-optimal problem. To transit the given initial point
x0 to the origin in the shortest time by an admissible control. The control
and the trajectory which solve this problem are said to be time-optimal (or
optimal).

We formulate the fundamental facts of the linear optimal control theory
[1, 2] for the considered object (1). Assume that the control region U is
situated in the general position with respect to the matrix A. In other
words, for every edge [p, q] of the convex polygon U , the vector q− p is not
an eigenvector of the matrix A.

We denote by Σ∞ the controllability region, i.e., the set of all initial
points x0 which can be transited to the origin by an admissible control.
The set Σ∞ ⊂ R2 is open and convex. For every point x0 ∈ Σ∞ there is
the unique optimal process u(t), x(t), transiting x0 to the origin. Moreover,
the optimal control u(t) is piecewise constant, takes its values only at the
vertices of the polygon U , and has a finite number of switchings, i.e., a
finite number of intervals of constancy.

To find optimal controls, consider the conjugate equation:

ψ′ = −ψA, (2)

where ψ = (ψ1, ψ2) is an auxiliary covariant vector (i.e., a line vector).
The equation (2) has the coordinate form

ψ′j = − ∑

i=1,2

ψia
i
j , j = 1, 2.

A control u(t), t0 ≤ t ≤ t1, is said to satisfy the maximum condition,
if there exists a nontrivial solution ψ(t) of equation (2) such that for the
scalar product 〈ψ(t), u〉 = ψ1(t)u

1 + ψ2(t)u
2, the relation

u(t) arg max
u∈U

〈ψ(t), u〉, t0 ≤ t ≤ t1, (3)
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FIGURA 1.

holds, i.e., 〈ψ(t), u(t)〉 = maxu∈U 〈ψ(t), u〉. Now the maximum principle
affirms: An admissible control u(t), t0 ≤ t ≤ t1, transiting x0 to the origin,
is optimal if and only if it satifies the maximum condition (3) with respect
to a nontrivial solution ψ(t) of equation (2).

Let now X(t) be the principal matrix solution of the homogeneous equa-
tion

x′ = Ax, (4)

i.e., X ′(t) = AX(t) and X(0) = I, the identity matrix. Then

x(t) = X(t− t0)
(
x0 +

∫ t

t0
X−1(s− t0)u(s) ds

)
, t0 ≤ t ≤ t1, (5)

is the trajectory corresponding to the control u(t), t0 ≤ t ≤ t1, and the
initial point x0.

In the sequel, we consider the case when the matrix A has two complex
eigenvalues λ1, λ2 with positive real parts. In this case the general position
condition for U is satisfied, since A has no real one-dimensional invariant
subspaces. Then the origin is a nonstable singular point (a nonstable focus)
for the corresponding homogeneous system (4) and the controllability region
Σ∞ is a bounded, open, convex set in R2.

II. The Optimal Synthesis

Denote by w1, . . . , wq the vertices of the polygon U , following its counter
counterclockwise (figure 1). First we consider the case when the matrix A
has the special form:

A =
(

a −b
b a

)
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with positive a, b, i.e., we consider the controlled object

x1′ = ax1 − bx2 + u1,

x2′ = bx1 + ax2 + u2.
(6)

In this case the eigenvalues of the matrix A are λ1 = a+bi and λ2 = a−bi.
The general solution x(t) of the corresponding homogeneous system

x1′ = ax1 − bx2,

x2′ = bx1 + ax2,
(7)

has the form:
x1(t) = ceat cos(bt + θ),

x2(t) = ceat sin(bt + θ),

c > 0 and θ being constant parameters. Passing to the polar coordinates,
we rewrite this general solution in the form:

r = ceat,

ψ = bt + θ.
(8)

It follows the polar angle ψ moves in the course of time t uniformly
with the velocity b. In other words, the ray, emanating from the origin
and containing the point x(t), rotates counterclockwise with the angular
velocity b radian/second.

Excepts for the time t, we obtain the polar equation of the phase trajec-
tory (8) in the form of a logarithmic spiral

r = Ke
a
b ψ, (9)

where K = ce−
a
b θ is a positive constant, and the phase point moves coun-

terclockwise along this trajectory. The phase portrait is an unstable focus
(figure 2).

From (9) we deduce an imporant property of the phase trajectories: Every
two phase trajectories of the system (7) are obtained from each other by a
homothety with the center at the origin and a positive radio.

We now call our attention to the system (6) that differs from (7) by the
presence of summands u1, u2.

For every point u of the plane R2 we denote by v the point whose coor-
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FIGURA 2.

dinates satisfy the relations

av1 − bv2 + u1 = 0,

bv1 + av2 + u2 = 0.

The point v is well-defined by u, since the linear system has nonzero
determinant a2 + b2. The passing u−→

a
v is a rotary dilation, i.e., the com-

position of a rotation with the center at the origin and homothety with the
center at the origin. We denote it by g, i.e., v = g(u). The rotation g maps
the polygon U onto the polygon V with the vertices

v1 = g(w1), . . . , vq = g(wq).

Let u(t), t0 ≤ t ≤ t1, be an optimal control for the controlled object
(6), i.e., u(t) satisfies the maximum condition with respect to a nontrivial
solution ψ(t) of the conjugate system. Then, by the maximum principle, u(t)
is a piecewise constant and takes its values at the vertices of the polygon
U . Let, in a time-segment, the optimal control u(t) take the value u = wi.
Then in this time-segment, the phase point moves under the equations:

x1′ = ax1 − bx2 + w1
i ,

x2′ = bx1 + ax2 + w2
i .

By the definition of the similarity g, this system can be rewritten in the
form:

d

dt
(x1 − v1

i ) = a(x1 − v1
i )− b(x2 − v2

i ), (10a)i
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d

dt
(x2 − v2

i ) = b(x1 − v1
i ) + a(x2 − v2

i ). (10b)i

Thus if u = wi in a time-segment, then the corresponding piece of the
trajectory is obtained from the corresponding piece of the trajectory for
the homogeneous system (7) by the translation with the vector vi.

FIGURA 3.

We draw the rays emanating from the origin and having the directions
defined by the outward normals of the polygon U (figure 3). Denote by αi
the angle between the rays which have the directions of outward normals
for the sides adjoining the vertex wi.

FIGURA 4.

Let now ψ be a nonzero vector situated in the interior of the angle αi.
Then ψ forms obtuse angles with both the sides of U adjoining the vertex
wi (figure 4). It follows that the scalar product 〈ψ, u〉 takes its maximal
value over u ∈ U at the vertex wi.
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The conjugate system for (6) has the form:

ψ′1 = −aψ1 − bψ2,

ψ′2 = bψ1 − aψ2.

Its general solution ψ(t) has the following coordinate form:

ψ1(t) = c′e−at cos(bt + θ′),

ψ2(t) = c′e−at sin(bt + θ′),

where c′, θ′ are constants. Consequently the vector ψ(t) rotates counter-
clockwise with the angular velocity b radian/second (a variation of its length
is for us unessential). In other words, the vector ψ(t) is changed in the fo-
llowing way. During the time αi/b it is situated in the angle αi, then during
the time αi+1/b it is situated in the angle αi+1, then during the time αi+2/b
in the angle αi+2, etc. We consider here the indices i, i + 1, i + 2, . . . as re-
sidues modulo q, i.e., if for example i = q, then i + 1 = 1, i + 2 = 2,
etcetera.

Now the view of optimal control u(t) is clear: during the time αi/b the
control u takes he value wi, then during the time αi+1/b it takes the value
wi+1, then during the time αi+2/b it takes the value wi+2, etc. Finally
the corresponding optimal trajectory (that which satisfies the maximum
condition) has the following character: during the time ≤ αi/b the phase
point moves under the system (10)i, then during the time αi+1/b it moves
under the system (10)i+1, then during the time αi+2/b it moves under the
system (10)i+2 and so on; at last the phase point moves during the time
≤ αj/b under the system (10)j until it arrives at the origin. We put the
sign ≤ for the first and the last pieces of the optimal trajectory, since the
movement may start at a moment distinct from a switching and may be
ended (by arriving to the origin) before the next switching.

We now remark that the arc of the trajectory for the system (7) running
during the time α/b is visible from the origin at the angle of α (figure 5).
This follows immediatly from the second equality (8).

Consequently the arc of the trajectory (10)i running during the time α/b
is also visible from the point vi = g(wi) at the angle of α.

Now every optimal trajectory may be described in the following way. The
phase point moves along an arc of the system (10)i visible from vi at an
angle ≤ αi; then the phase point describes an arc of (10)i+1 visible from
vi+1 at the angle αi+1, then it describes an arc of (10)i+2 visible from vi+2
at the angle αi+2, and at last the phase point describes an arc of the system
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FIGURA 5.

FIGURA 6. FIGURA 7.

(10)j visible from vj at an angle ≤ αj and arrives at the origin. Conversely,
every phase trajectory of this form is optimal.

We now are able to construct the synthesis of optimal trajectories. Denote
by B

(0)
j the arc of the system (10)j that terminates at the origin and is

visible from vj at the angle αj , j = 1, 2, . . . , q (figure 6). We obtain q arcs

B
(0)
1 , . . . , B

(0)
q (figure 7). Let now x(t) be an optimal trajectory and u(t)

be the corresponding optimal control. The last piece x(0) of the optimal
trajectory x(t) is situated in one of the arcs B

(0)
j , i.e., this last piece is a

part of B
(0)
j from a point a

(0)
j ∈ B

(0)
j till the origin. At the moment when

x(t) passes through the point a
(0)
j the optimal control u(t) has switching

from u = wj−1 to u = wj . This means that before this moment the phase
point x(t) moved under the system (10)j−1 during the time αj−1/b. In other
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words, the previous piece x(1) of the optimal trajectory x(t) is the arc of
(10)j−1 terminating at the point a

(0)
j and visible from vj−1 at the angle

αj−1. We denote the initial point of this arc x(1) by a
(1)
j−1. As the point a

(0)
j

runs over B
(0)
j the arcs x(1) fil in a “curvilinear quadrangle” (figure 8) whose

two sides are B
(0)
j , B

(0)
j−1. We denote this quadrangle by Q

(1)
j−1 and its side

oposite B
(0)
j by B

(1)
j−1. The arc B

(1)
j−1 is the set of all points a

(1)
j−1 at which

the switching from (10)j−2 to (10)j−1 takes place.

FIGURA 8.

Denote by hi the homothety with the center vi and ratio e−aαi/b. By
ri denote the rotation at the angle αi clockwise with the center vi. The
composition pi = hi convol ri is a rotary dilition with fixpoint vi. It is easily
shown that the arc B

(1)
j−1 is obtained from B

(0)
j by the transformation pj−1

(since, by (8), the point a
(1)
j−1 is obtained from a

(0)
j under the transformation

pj−1.

Before the switching at the point a
(1)
j−1 the phase point x(t) moved under

the system (10)j−2. The corresponding arc x(2) is visible from the point vj−2

at the angle αj−2 (figure 9). The initial point a
(2)
j−2 of this arc is obtained

from a
(1)
j−1 by the transformation pj−2. As the point a

(1)
j−1 runs over B

(1)
j−1

the arcs x(2) fill in a “curvilinear quadrangle”. We denote this “quadrangle”
by Q

(2)
j−2 and its side opposite B

(1)
j−1 by B

(2)
j−2. The arc B

(2)
j−2 is the set of all

points a
(2)
j−2 at which the switching from (10)j−3 to (10)j−2 takes place and

this arc B
(2)
j−2 is the image of B

(1)
j−1 under the transformation pj−2.
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FIGURA 9.

Continuing in this way, we obtain q switching curves F1, . . . , Fq, where

Fi = B
(0)
i ∪B

(1)
i ∪B

(2)
i ∪· · ·. The transformation pi maps the curve Fi+1 onto

the curve B
(1)
i ∪B

(2)
i ∪· · · ⊂ Fi. This allows to obtain successively the pieces

of the switching curves F1, . . . , Fq from their initial pieces B
(0)
1 · · ·B(0)

q .
The homothety hi has ratio e−aαi/b < 1. We put

k = máx
(
e−aα1/b, . . . , e−aαq/b

)
.

Then 0 < k < 1. The arc B
(1)
i−1 is obtained from B

(0)
i by the similarity

pi−1 = hi−1 convol ri−1 with radio ≤ k. Similarly, for any m = 1, 2, . . ., the
arc B

(m+1)
j−1 is obtained from B

(m)
j by the dilitation pj−1 with ratio ≤ k.

Hence in the sequence

B
(0)
i , B

(1)
i−1, B

(2)
i−2, . . . , B

(m)
i−m, B

(m+1)
i−m−1, . . .

every arc is obtained from the previous one by a similarity with ratio ≤ k.
In other words, the sizes of the arcs in this sequence decrease no slower than
in geometrical progression with the ratio k. Consequently the controllability
region, i.e., the set Σ ⊂ R2 in which the synthesis of optimal trajectories is
realized, is bounded, open, and convex (figure 10).
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FIGURA 10.

We remark that the control parameter u takes value wi in the “angle”
between the curves Fi, and at the points of the curve Fi. This gives the
synthesis of optimal controls. The synthesis of optimal trajectories is shown
in figure 11.

Consider the curve composed from arcs x(i−1), x(i−2), . . . , x(i−q). This
curve starts at a point of the switching curve Fj (for an index j) and arr-

FIGURA 11.
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FIGURA 12.

ives to another point of the same switching curve Fj (figure 12). When the

initial point a
(i−1)
j of the arc x(i−1) tends to the boundary of Σ, the curve

x(i−1) ∪ x(i−2) ∪ · · · ∪ x(i−q) tends to the curve C
(∞)
j ∪ C

(∞)
j+1 ∪ · · · ∪ C

(∞)
j+q−1

which runs over the boundary of the controllability region Σ. The arc C
(∞)
j+k

is a piece of the trajectory for the equation (10)j+k, i.e., the phase point

runs along the arc C
(∞)
j+k with u(t) ≡ wj+k during the time αj+k/b, k =

0, 1, . . . , q−1. This means that the cycle bdΣ = C
(∞)
j ∪C

(∞)
j+1 ∪· · ·∪C

(∞)
j+q−k

is a closed trajectory for the controlled object (6). In other words, if we take
the initial point of the arc C

(∞)
j and consider the corresponding trajectory

for the object (6) with u = wj during the time αj/b, then the trajectory
of (10)j+1 during the time αj+1/b, etc., then (after q switchings) we again

arrive to the initial point of the arc C
(∞)
j . This allows to find, uniquely, the

cycle bdΣ = C
(∞)
j ∪ C

(∞)
j+1 ∪ · · · ∪ C

(∞)
j+q−1.

The above reasoning shows that every optimal trajectory, which comes
to the origin, approaches to the limit cycle bdΣ as t → −∞. Moreover, the
limit cycle bdΣ is the closest trajectory satisfying the maximum principle.
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In conclusion, we remark that the above results were considered for the
controlled object (6). But, for any controlled object (1), that has complex
eigenvalues with positive real parts, the synthesis of optimal trajectories
is obtained from the synthesis for (6) by an affine transformation, i.e.,
qualitatively the portrait of the synthesis is analogous.

III. Example

FIGURA 13.

Consider a mathematical pendulum with a negative, linear friction. We are
interested in the movement of the pendulum close to its lowest equilibrium
point O (figure 13). The equation of the movement has the form:

ms̈ = mlψ̈ = −mg sin ψ + bψ̇,

where ψ is the deviation angle from the vertical direction, m is the mass
of the pendulum, l is the length of the string, and b > 0 is the coefficient
of the linear, negative friction. If we consider only small values of ψ, the
equation takes the linearized form:

ψ̈ − 2δψ̇ + ω2ψ = 0, (11)

where ω =
√

q/l and δ = b/2m. Introducing the phase coordinates z1 =
ψ, z2 = ż1 = w dψ/dt (the angular velocity), we rewrite the movement
equation in the form:

ż1 = z2,

ż2 = −ω2z1 + 2δz2.
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By a suitable linear transformation of coefficients, this system can be
reduced to the form (7).

The same equation (11) can be obtained, if we consider a mass point that
moves under the action of a spring and a negative, linear friction.

Assume now that the mass point (or the pendulum) has two engines such
that the homogeneous system (7) takes the form:





ẋ1 = ax1 − bx2 + u1,

ẋ2 = bx1 + ax2 + u2,

−1 ≤ u1 ≤ 1, −1 ≤ u2 ≤ 1.

(12)

The system (12) is a particular case of the general system considered
above. This allows to obtain the synthesis of optimal trajectories for these
mechanical examples. Remark that the control region is a rectangle (cf.
equation 12).

IV. The slowest going away trajectories

First of all, we reformulate the aforesaid results with the help of the Bellman
function. For the linear controlled object (6) and a given initial point x0
we denote by ω(x0) the “minimal time” for transiting the point x0 to the
origin by an admissible control u(t). The function ω(x0) is said to be a
Bellman function. If the control region U is a polygon in general position
with respect to the matrix A, then the Bellman function ω(x) is defined and
continuous in the open set Σ ⊂ R2. Moreover, the Bellman function ω(x)
is differentiable everywhere in Σ\(F1 ∪ · · · ∪ Fq) and satisfies the Bellman
equation

máx
u∈U

(
−

2∑

i=1

∂ω(x)
∂xi

(Axi + ui)
)

= 1,

i.e.,

máx
u∈U

〈− grad ω(x), Ax + u〉 = 1.

and this maximun is obtained for every optimal process.
Moreover, for every admissible process u(t), x(t) (t0 ≤ t ≤ t1, with

x(t0) = x0, x(t1) = x1 the inequality t1 − t0 ≥ ω(x1) − ω(x0) holds. This
gives an estimate for the movement time.

We now generalize these facts for the trajectories situated in R2\Σ. First
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we consider the object (6). Denote by Li the ray emanating from the ori-
gin and passing through the common point of the arcs C

(∞)
i−1 and C

(∞)
i

(figure 14). Let u(t), x(t) (t0 ≤ t ≤ t1) be an admissible process satisfying
the maximum principle and situated in R2\Σ.

FIGURA 14.

Moreover, assume that the switching from wi−1 to wi is realized as the
point x(t) = ai is situated in the ray Li. Then, during the time αi/b the
point x(t) moves with u ≡ wi and is situated in the angle Wi between Li
and Li+1. After that we have the switching from wi to wi+1, etcetera.

There exist a continuous function ω(x) in R2\Σ that is diferentiable in
the interior of every angle Wi. This function satisfies the equality ω(x(t1))−
ω(x(t0)) = t1 − t0 along the above trajectory x(t) for which the maximum
principle holds. On the segment [ai, ai+q] the function ω(x) increases from
a value ω(ai) = ωi till the value ω(ai+q) = ωi + 2π/b (since the movement
from ai to ai+q is realized during the time 2π/b). And if the values of
ω(x) on the segment [ai, ai+q] are fixed, then the function ω(x) is uniquely
defined everywhere on R2\Σ (along the trajectories satisfying the maximum
principle).
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TRAJECTORIES MOST SLOWLY GOING AWAY

Moreover, for every trajectory x(t), t0 ≤ t ≤ t1, of the controlled object
(6) situated in R2\Σ, the estimate:

t1 − t0 ≥ ω(x(t1))− ω(x(t0)) (14)

holds. This means that the trajectory x(t) runs away most slowly if in (14)
the equality holds. And this is realized if and only if the trajectory x(t) with
the control u(t) satisfies the maximum condition. In other words, inside Σ,
the maximum condition means the quickest approach to the origin, whereas
outside Σ the maximum condition means the slowest running away. And
the function ω(x) satifies the relation (14) everywhere in R2\Σ except for
the rays L1, . . . , Lq.

FIGURA 15.

The formulated facts may be explained in the following way. The curves
ω(x) = const form a system of closed curves around bdΣ (figure 15). We
denote the curve ω(x) = µ by Kµ. Then for every trajectory x(t) (t0 ≤ t ≤
t1), with x(t0) = x0 ∈ Kµ0

, x(t1) = x1 ∈ Kµ1
, we have t1 − t0 ≤ µ1 − µ0,

i.e., the trajectory goes through the “ring” between Kµ0
and Kµ1

in a time
≤ µ1 − µ0. For the trajectories which satisfy the maximum condition, the
equality holds.

This means exactly that the trajectories satisfying the maximum condi-
tion are slowest in their running away. Figure 14 shows that all the trajec-
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tories outside Σ are like spirals going from bdΣ to infinity, and ω(x(t)) is
the “away velocity” for them.

We remark that ω(x) → −∞ as the point x approaches to bdΣ, and
ω(x) → ∞ as x goes to infinity. Moreover, the above description of the
trajectories going away more slowly was given for the controlled object (6).
Up to an affine transformation, the results are the same for any controlled
object (1) that has complex eigenvalues with positive real parts.
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